Table of Contents
alphasim - extended uses
Motivation
Under certain circumstances, the traditional way to employ alphasim does not provide the user with the appropriate cluster-level thresholds to actually correctly achieve the desired false-positive rate (of maps, FWE/Bonferroni-corrected alpha level):
- the maps that are displayed are the result of a conjunction
- the maps are correlations (sometimes more severe if the IV is heavily skewed)
Requirements
Conjunction case
In case of a conjunction analysis, alphasim currently assumes that the terms entering the contrast themselves are valid statistics (their overall false-positive rate behaves as specified) and are independent (e.g. orthogonal contrasts from separate conditions or groups of subjects).
Correlation case
To simulate the outcome of a specific correlation, both the maps used (e.g. per-subject contrast maps) and the regressor (independent variable, e.g. behavioral measure with one value per subject, such as a questionnaire score) must be given.
Alternatively, if only the maps are specified, alphasim generates random (normally distributed) regressors, which then tests whether any skewing in the contrast maps leads to increased (or decreased) levels of false positives and thus larger (or smaller) cluster-level thresholds.
Function help
alphasim - simulate noise data to estimate cluster threshold FORMAT: [at = ] alphasim(ddim [, opts]) Input fields: ddim data dimension (1x3 integer values) opts optional settings .clconn connectivity of clusters, ('face', {'edge'}, 'vertex') .conj conjunction simulation (1x1 double, number of maps) .fftconv boolean flag, use FFT convolution (default: false) .fwhm FWHM kernel sizes (default: [2, 2, 2]) .mask boolean mask (size must be == ddim!, default: none) .niter number of iterations, default: 1000 .pbar either xprogress or xfigure:XProgress object .regmaps regression maps (e.g. betas, contrasts) .regmodel regression model (all-1s column will be complemented) .regrank rank-transform data before useing regression .srf optional surface (perform surface-based simulation) .srfsmp surface sampling (from, step, to, along normals, default: [-3, 1, 1]) .srftrf transformation required to sample surface coordinates derived from bvcoordconv .thr applied (raw) threshold(s), default: p<0.001 Output fields: at optional output table Note: other than AFNI's AlphaSim, the data is considered to be iso-voxel for the default kernel, but that can be altered accordingly by changing the kernel! to simulate specific regression results, both options, .regmaps .regmodel must be set; if only .regmaps is given, random numbers (using randn) will be generated instead of permuting the predictor
Usage examples
Conjunction case
In this example, we assume that the map to be cluster-level thresholded is the result of the conjunction of two independent t-statistics. Further settings
- map is 52-by-50-by-62 voxels in size
- functional resolution is 3mm (iso-voxel)
- smoothing of the underlying maps was 8mm → kernel in functional resolution is 8/3 voxel!
- we hope for very few maps with large clusters, thus we increase the number of iterations
- alphasim supports settings several threshold (by rescaling the simulated maps)
asim_options = struct( ... 'conj', 2, ... 'fwhm', [8/3, 8/3, 8/3], ... 'niter', 2500, ... 'thr', [0.05, 0.02, 0.01, 0.005, 0.002, 0.001]); alphasim([52, 50, 62], asim_options);
Correlation case
Only maps are given
Following the example above, we simply use a different set of options:
- maps are given (see glm.RFX_conmaps for how to obtain those from a RFX-GLM)
- mask is derived from those maps
asim_cons = glm.RFX_conmaps([0, 1, 0, -1, 0]); asim_mask = any(asim_cons ~= 0, 4); % this masks voxels for which all subjects have a 0-value asim_options = struct( ... 'fwhm', [8/3, 8/3, 8/3], ... 'mask', any(asim_cons ~= 0, 4), ... 'niter', 2500, ... 'regmaps', asim_mask, ... 'thr', [0.005, 0.002, 0.001]); alphasim(size(asim_mask), asim_options);
This will simulate a normally distributed regressor.
Maps and regressor are given
In addition to the above example, a regressor can be set in asim_options, in which case a permutation-based simulation is performed:
asim_options.regmodel = ... [0.25; 0.61; 1.24; -0.07; 0.91; 1.41; 3.11; -0.12; 0.77; 0.49; 0.8; 0.04]; alphasim(size(asim_mask), asim_options);
Sample output
In the conjunction case, this is the sample output (using only 100 iterations, taking 94 seconds on my MacBook Pro…):
Uncorrected threshold: p<0.050000 ------------------------------------------------------------ Cl Size Frequency CumProbCl p / Voxel MaxFreq Alpha 1 6367 0.4037925 0.0500000 0 1.00000 2 3248 0.6097793 0.0435410 0 1.00000 3 1817 0.7250127 0.0369512 0 1.00000 4 1161 0.7986428 0.0314214 0 1.00000 5 804 0.8496322 0.0267104 0 1.00000 6 602 0.8878108 0.0226323 0 1.00000 7 411 0.9138762 0.0189681 0 1.00000 8 290 0.9322679 0.0160495 0 1.00000 9 233 0.9470446 0.0136960 0 1.00000 10 207 0.9601725 0.0115687 0 1.00000 11 137 0.9688610 0.0094688 0 1.00000 12 105 0.9755200 0.0079401 0 1.00000 13 86 0.9809741 0.0066619 4 1.00000 14 59 0.9847159 0.0055277 3 0.96000 15 46 0.9876332 0.0046898 5 0.93000 16 35 0.9898529 0.0039898 6 0.88000 17 41 0.9924531 0.0034217 10 0.82000 18 20 0.9937215 0.0027147 8 0.72000 19 19 0.9949264 0.0023495 7 0.64000 20 19 0.9961314 0.0019832 8 0.57000 21 10 0.9967656 0.0015978 7 0.49000 22 8 0.9972730 0.0013847 4 0.42000 23 7 0.9977169 0.0012062 5 0.38000 24 4 0.9979706 0.0010429 4 0.33000 25 6 0.9983511 0.0009455 6 0.29000 26 8 0.9988584 0.0007933 8 0.23000 27 2 0.9989853 0.0005823 2 0.15000 28 4 0.9992390 0.0005275 3 0.13000 29 1 0.9993024 0.0004139 0 0.10000 30 1 0.9993658 0.0003845 1 0.10000 32 1 0.9994292 0.0003540 0 0.09000 33 3 0.9996195 0.0003216 3 0.09000 34 1 0.9996829 0.0002211 1 0.06000 35 1 0.9997463 0.0001867 1 0.05000 36 2 0.9998732 0.0001512 2 0.04000 37 1 0.9999366 0.0000781 1 0.02000 40 1 1.0000000 0.0000406 1 0.01000 Uncorrected threshold: p<0.020000 ------------------------------------------------------------ Cl Size Frequency CumProbCl p / Voxel MaxFreq Alpha 1 2363 0.4895380 0.0200000 0 1.00000 2 1073 0.7118293 0.0157331 0 1.00000 3 542 0.8241144 0.0118581 0 1.00000 4 331 0.8926870 0.0089220 0 1.00000 5 186 0.9312202 0.0065312 2 1.00000 6 115 0.9550445 0.0048519 10 0.98000 7 67 0.9689248 0.0036060 6 0.88000 8 55 0.9803190 0.0027591 18 0.82000 9 19 0.9842552 0.0019646 11 0.64000 10 24 0.9892273 0.0016558 17 0.53000 11 19 0.9931635 0.0012225 8 0.36000 12 10 0.9952351 0.0008451 6 0.28000 13 5 0.9962710 0.0006284 4 0.22000 14 8 0.9979283 0.0005110 8 0.18000 16 4 0.9987570 0.0003088 4 0.10000 17 2 0.9991713 0.0001932 2 0.06000 18 3 0.9997928 0.0001318 3 0.04000 19 1 1.0000000 0.0000343 1 0.01000 Uncorrected threshold: p<0.010000 ------------------------------------------------------------ Cl Size Frequency CumProbCl p / Voxel MaxFreq Alpha 1 1176 0.5613365 0.0100000 0 1.00000 2 480 0.7904535 0.0070754 2 1.00000 3 199 0.8854415 0.0046879 6 0.98000 4 103 0.9346062 0.0032032 16 0.92000 5 51 0.9589499 0.0021786 14 0.76000 6 45 0.9804296 0.0015444 26 0.62000 7 17 0.9885442 0.0008729 13 0.36000 8 9 0.9928401 0.0005770 8 0.23000 9 5 0.9952267 0.0003979 5 0.15000 10 4 0.9971360 0.0002860 4 0.10000 11 2 0.9980907 0.0001865 2 0.06000 13 3 0.9995227 0.0001318 3 0.04000 14 1 1.0000000 0.0000348 1 0.01000 Uncorrected threshold: p<0.005000 ------------------------------------------------------------ Cl Size Frequency CumProbCl p / Voxel MaxFreq Alpha 1 508 0.5805714 0.0050000 5 1.00000 2 212 0.8228571 0.0033388 19 0.95000 3 90 0.9257143 0.0019523 32 0.76000 4 27 0.9565714 0.0010693 10 0.44000 5 22 0.9817143 0.0007162 18 0.34000 6 10 0.9931429 0.0003564 10 0.16000 7 2 0.9954286 0.0001602 2 0.06000 8 1 0.9965714 0.0001145 1 0.04000 9 3 1.0000000 0.0000883 3 0.03000 Uncorrected threshold: p<0.002000 ------------------------------------------------------------ Cl Size Frequency CumProbCl p / Voxel MaxFreq Alpha 1 196 0.6555184 0.0020000 40 1.00000 2 66 0.8762542 0.0011588 31 0.60000 3 24 0.9565217 0.0005923 17 0.29000 4 7 0.9799331 0.0002833 6 0.12000 5 2 0.9866221 0.0001631 2 0.06000 6 1 0.9899666 0.0001202 1 0.04000 7 2 0.9966555 0.0000944 2 0.03000 8 1 1.0000000 0.0000343 1 0.01000 Uncorrected threshold: p<0.001000 ------------------------------------------------------------ Cl Size Frequency CumProbCl p / Voxel MaxFreq Alpha 1 81 0.6750000 0.0010000 68 1.00000 2 28 0.9083333 0.0005424 21 0.32000 3 7 0.9666667 0.0002260 7 0.11000 4 2 0.9833333 0.0001073 2 0.04000 5 1 0.9916667 0.0000621 1 0.02000 6 1 1.0000000 0.0000339 1 0.01000